

Utilizing Food Residuals in Compost Operations "A Review of Systems and Management"

Mark King
Maine Dept. of
Environmental Protection

FOOD RESIDUALS UTILIZATION OPTIONS: "Higher and Better Uses"

DIRECT FEED

-cooked produce and meat scraps to hogs and cows

-Bread residuals to Cows

COMPOSTING

-Rich "Humus-like" Material organic matter/landscaping

LAND APPLICATION

-applied agronomically (fertilizer) nitrogen, phosphorus, potassium

Comparison of Maine Disposal Costs

Landfill Disposal

\$65-85/ton*
*Extra if Putrescible

Composting

\$30 to \$45/ton

Trucking Costs can Skew this!!!

Composting Benefits

Low cost/low tech approach

40% reduction in initial residual volume

Reduction in odor and leachate potential

Stable, odorless, marketable soil additive

Feedstocks--Questions You Should Ask

- What's available in the area? How Much?
- How far away?
 Do I need to transport?
- Will the "Generating" facility pay a "tip" fee?
- Are the volumes predictable or seasonal?
- Does the facility have storage space?
- Are there any handling concerns?
 - Liquid vs. Dry
 - Putrescible/odors
- Do I need to modify the feedstock to use it?

"What's in a Name?"

"Everything!!"

Food Residual

Recipe Development

- Analyze and handle Feedstocks
 - Determine nutrient values (N,P,K,C, C:N)
 - %solids or total moisture content
 - Volatile Solids

Formulate Recipe

- Carbon to Nitrogen Ratio (25:1 to 30:1)
- Moisture (45%-60%)
- Porosity (maximize airspace/limit drying)
- Thorough Mixing (Homogeneous)

Four Elements Necessary for Successful Composting

- *Carbon- micro organisms need this for energy and growth
- *Nitrogen- micro organisms need this for protein and reproduction
- *Oxygen- above 5% needed to support micro organisms Air has 21% Oxygen
- *Moisture- 40% to 65% needed for healthy environment..... Below 15%, all activity ceases

Mixing

Compost Systems of Interest to YOU!!!

Backyard Systems

- Inexpensive to buy and operate
- Relatively "Hands-Free"
- Low Maintenance
- Small Capacity
- Limited to simple feedstocks (see below)
- Prone to Vector Attraction when using putrescible feedstocks

BACKYARD COMPOST BIN

Bin "Maryland" System

- Originally designed at the University of Maryland Agricultural Experiment Station.
- Series of Wooden Bins (Primary and Secondary).
- Litter, Straw, and Dead Birds (Poultry) are added in successive layers (2:1:1).
- Final layer of dry litter to discourage flies.
- Water is liberally added (40%).
- After 10 days material turned into 2nd bin.
- After total 20 days process is done.

Bin "Maryland" System (Cont.)

- Inexpensive to build and operate
- Designed for small scale applications.
- Layering and turning can be labor intensive.
- Produces "Crude" compost suitable for crop use.

Static Pile

- Compost ingredients simply stacked into a pile and left to decompose.
- Least labor intensive, piles turned 4X/yr.
- Least expensive method. Minimal Equipment (Front-end loader).
- Piles require long time to finish composting.
- Piles must be thoroughly mixed to ensure "Aerobic Composting".
- Potential for odor generation.
- Usually used for leaves and manure.

Turned Windrow

- Involves placing compost ingredients into long narrow piles (windrows) and then subsequently turning them at regular intervals.
- Typical dimension 3-6 feet high by 10-12 feet long.
- Turning provides aeration, rebuilds porosity, and aids in physical breakdown of ingredients.
- Windrows require temperature monitoring to measure pile activity and determine turning frequencies.

Turned Windrow

- Can be management intensive.
 - * Monitoring
 - *****Turning
- Piles can be turned using either a frontend loader or windrow turner

Front end Loader vs. Turner

- Front end loader works well for small scale operations (<500 cubic yd/yr).</p>
 - ->500 cubic yd/yr, loader tends to be time intensive, whereas turner can accomplish task in half the time.
- Turner physically agitates ingredients, loader tends to form "Balls".
- Turner represents additional cost, most facilities have front end loader.

In-Vessel

- Most expensive option.
- Allows all facets of operation to be enclosed.
- Odors are captured and treated in Biofilter.
- Allows you to optimize the process through continuous monitoring feedback and process control.
- Fastest compost time.
- Required "Routine" Maintenance.

Picking The "Right" System

- Answer the Feedstock Questions.
 - Handling Issues
 - Tip Fees
- Determine your Annual Volume Cap.
- Develop a "Financial Plan"
 - Capital for Equipment, Labor, Storage, etc.
- Determine the End-Use For the Finished Product.
- View as Many "Real-life" situations as you can.

Nuisance Problems

- ODORS!
- Vectors
 - Birds
 - Insects
 - Mammals
- Leachate

ODOR PROPERTIES

CHARACTER

CONCENTRATION

INTENSITY

HEDONIC TONE

ODOR MANAGEMENT

INCORPORATION

PROCESS CONTROL

- -OPTIMIZE RECIPE (C:N 25:1 TO 30:1)
- -POROSITY
- -MOISTURE (45-60%)
- -HOMOGENEOUS MIXTURE

PILE COVERING--4-6 INCH (10-15 CM) LAYER OF FINISHED COMPOST, PEAT OR SAWDUST ACTS AS A "MINI-SCRUBBER"

VECTORS

DISCOURAGE VECTORS BY

-NEAT AND CLEAN OPERATION

-GRINDING AND INCORPORATION

-THOROUGH MIXING

-PROCESS CONTROL

Solving Compost Problems

- Remember these are "People Problems"
- Respond to complaints ASAP

- Address Odors, leachate and Vectors by:
 - -maintaining a neat and clean operation
 - -strict process control
 - -C:N (25:1 to 30:1)
 - -moisture (45% to 60%)
 - -porosity (adequate "free" air space)
 - -mixture (Homogeneous)

Navigating the Application Process

The Process

- Chapter 410, Composting Facilities (effective February 18, 2009)
- Type of application filed will depend on:
 - What type of feedstocks will be used?
 - How much material will be composted annually?
 - What is the potential threat to public health and the environment?
 - Whether the facility meets certain requirements
- Applicable Rules, Forms and Fees may be found at:
 - http://www.maine.gov/dep/rwm/solidwaste/#ru

Type of Feedstocks

Type IA

- C:N ratio greater than 25:1
- Leaf & yard waste, wood chips, some vegetative waste

Type IB

- C:N ratio greater than 15:1 but less than 25:1
- Animal manure, most produce and vegetable waste

Type IC

- C:N ratio less than 15:1
- Fish waste

Type IB

Type IC

Type of Application

- Exemptions to licensing requirements
- Five types of applications
 - Pilot Project
 - Permit-By-Rule (PBR)
 - Reduced Procedure if facility doesn't meet PBR requirements
 - General Procedure (usually large-scale/commercial)

Chapter 410 General Exemptions

- Facilities that, in any thirty (30) consecutive day period, receive for composting less than:
 - Ten (10) cubic yards of Type IA residuals;
 - Five (5) cubic yards of Type IB residuals;
 or
 - Five (5) cubic yards of Type IC residuals;
- The composting of solid waste during a Department-supervised remediation, emergency response, or research project; and
- Composting toilets as defined the in Maine Subsurface Wastewater Disposal Rules, 10-144 CMR 241(1004)(0).

Chapter 410 Agricultural Exemptions

- Facilities that compost domestic animal and poultry carcasses in accordance with Department of Agriculture Carcass Disposal Rules.
- Facilities that compost 10,000 cubic yards or less of animal manure per year;
- *Agricultural Composting Operations that, in any thirty (30) consecutive day period, compost a total of between five (5) and thirty (30) cubic yards of Type IB and IC residuals, and have a Compost Management Plan approved by the Maine Department of Agriculture, Food and Rural Resources;
- Agricultural Composting Operations that compost any volume of Type IA, Type IB or Type IC waste provided that at least 70% of the finished compost product is used at appropriate agronomic rates on the farm;
- Agricultural Composting Operations that use leaves as an amendment to compost manure;
- Agricultural Composting Operations that compost offal;

Pilot Project

- To collect technical information
 - Environmental feasibility
 - Financial feasibility
- Intended for trying a proven technology in a new setting

Permit-By-Rule

- Section 5 of Chapter 410
- Leaf and yard waste only
- Facility <3 acres</p>
- Public notification
- Submit application and it is automatically approved unless denied within 15 working days

Reduced Procedure

- Section 6 of Chapter 410
- Includes:
 - Any Volume of Type IA
 - ❖ Up to 400 yds³ monthly of Type IB
 - ♦ 200 yds³ monthly of Type IC or Type II
- Suitable "Working Surface"
- Impervious Mixing Pad
 - Whole Compost Operation on impervious surface for greater than 750 yds³ Type IC, annually
- Public notification
- Submit application--on approved forms

Application Fees

- Pilot Project \$132
- Permit-By-Rule \$264
- Reduced Procedure / General Procedure
 - Type IB and IC <750 yds³/year \$422
 - Type IB and IC \geq 750 yds³/year \$422

SUMMARY

GOOD SITING AND STRICT PROCESS CONTROL CAN HELP MAXIMIZE FACILITY EFFICIENCY WHILE HELPING TO AVOID NUISANCES

Questions??!!